

## ExxonMobil Label-Lyte® 18 LLG-101 Clear OPP Film

Category: Polymer, Adhesive, Film, Thermoplastic, Polypropylene (PP), Polypropylene, Film Grade

## **Material Notes:**

Product Description: A clear, one-side treated, polypropylene film that is designed to provide exceptional clarity and print protection when used as over laminates in pressure-sensitive labeling applications. This film is formulated with a proprietary non-migratory slip system.

The treated clear layer provides excellent anchorage to most adhesive and is the intended print and laminating surface. Availability: Latin America, North America and South AmericaKey Features: Outstanding clarity and gloss Excellent ink adhesion with most solvent-based and water-based ink systems Excellent bond strength with most laminating adhesives Applications: Beverage, Carbonated Beverage, Mineral Waters Dairy Products Dry Foods and Beverage Powders Uses: Pressure Sensitive Labels Processing Method: Outer Web Adhesive Lamination, Solvent Flexographic Printing, Solvent Rotogravure Printing, Surface Print Unsupported and Water-based Flexographic Printing Information provided by Exxon Mobil Chemical

## Order this product through the following link:

http://www.lookpolymers.com/polymer\_ExxonMobil-Label-Lyte-18-LLG-101-Clear-OPP-Film.php

| Physical Properties | Metric       | English      | Comments          |
|---------------------|--------------|--------------|-------------------|
| Thickness           | 17.8 microns | 0.700 mil    | ExxonMobil Method |
| Coating Weight      | 15.7 g/m²    | 9.80 lb/ream | ExxonMobil Method |

| Mechanical Properties              | Metric     | English   | Comments                                               |
|------------------------------------|------------|-----------|--------------------------------------------------------|
| Film Elongation at Break, MD       | 162 %      | 162 %     | 20 in/min, 2.0 in Jaw Separation;<br>ExxonMobil Method |
| Film Elongation at Break, TD       | 47 %       | 47 %      | 20 in/min, 2.0 in Jaw Separation;<br>ExxonMobil Method |
| Coefficient of Friction            | 0.20       | 0.20      | Machinable; ExxonMobil Method                          |
| Film Tensile Strength at Break, MD | 138 MPa    | 20000 psi | 20 in/min, 2.0 in Jaw Separation;<br>ExxonMobil Method |
| Film Tensile Strength at Break, TD | 295.79 MPa | 42900 psi | 20 in/min, 2.0 in Jaw Separation;<br>ExxonMobil Method |

| Thermal Properties | Metric | English | Comments                    |
|--------------------|--------|---------|-----------------------------|
| Shrinkage, MD      | 5.5 %  | 5.5 %   | at 275°F; ExxonMobil Method |
| Shrinkage, TD      | 6.0 %  | 6.0 %   | at 275°F; ExxonMobil Method |

| Optical Properties | Metric | English | Comments                                      |
|--------------------|--------|---------|-----------------------------------------------|
| Haze               | 1.8 %  | 1.8 %   | ExxonMobil Method                             |
| Gloss              | 88 %   | 88 %    | 45°, Machinable Surface; ExxonMobil<br>Method |
|                    |        |         |                                               |



| Optical Properties     | 90 %<br>Metric | English                   | clear thickness not quantified<br>Comments |  |
|------------------------|----------------|---------------------------|--------------------------------------------|--|
| Descriptive Properties | Value          |                           | Comments                                   |  |
| Wetting Tension        | 0.85 re        | 0.85 receding COS theta   |                                            |  |
| Yield                  | 44000          | 44000 in <sup>2</sup> /lb |                                            |  |

## **Contact Songhan Plastic Technology Co.,Ltd.**

Website: www.lookpolymers.com Email: sales@lookpolymers.com

Tel: +86 021-51131842 Mobile: +86 13061808058

Skype: lookpolymers

Address: United North Road 215, Fengxian District, Shanghai City, China